Navigating the 2013-2014 dairy feed situation

Randy Shaver & Pat Hoffman Department of Dairy Science University of Wisconsin – Madison University of Wisconsin – Extension

"Perfect Storm" of Feed-Related Issues

- 2012 southern & central Wisconsin drought
 - Low on-farm feed inventories coming into the spring generally & very limited feed carryover for many
- Wide-spread winter-kill of alfalfa throughout the state
- Wet conditions for corn planting and first-crop forage harvest in several key dairy areas
- Tight hay supplies nationally and very expensive prices if needing to buy hay
- High corn, soybean meal, and other concentrate prices

Tips & Strategies

Nutrition & Crop Advisor & Supplier relationships

Feed Inventory Current & Projected (rolling) Projected Needs

> Minimize Shrink

Inventory Resources

<u>Team Forage Harvest & Storage Web Page</u>

www.uwex.edu/ces/crops/uwforage/storage.htm

Spreadsheets Silage Pile Capacity Calculator Silage Pile Dimension Calculator Bunker Silo Density Calculator Bunker Silo Sizing Calculator

Tips & Strategies

> Position alternative forages, i.e. winter wheat, rye, spring oats or oats & peas, etc. Early-cut to milking cows as needed Late-cut to heifers/dry cows >Frequent forage testing critical Greater quality variation, for standard & alternative forages

Lower than normal quality in some cases

Average forage quality values for oats harvested at different maturity stages (Rankin, UWEX-FDL, 2003)

Harvest <u>Stage</u>	<u>CP%</u>	<u>NDF%</u>
Boot	16 - 18	52 - 54
Heading	14 - 16	56 - 58
Milk	12 - 14	59 - 61
Dough	10 - 12	59 - 61

Impact of Small-Grain Silage Maturity Arieli & Adin, JDS, 1994

<u>Item</u>	Early Cut	Late Cut
Milk Yield, lb/d	79	72

11 days between early and late cut

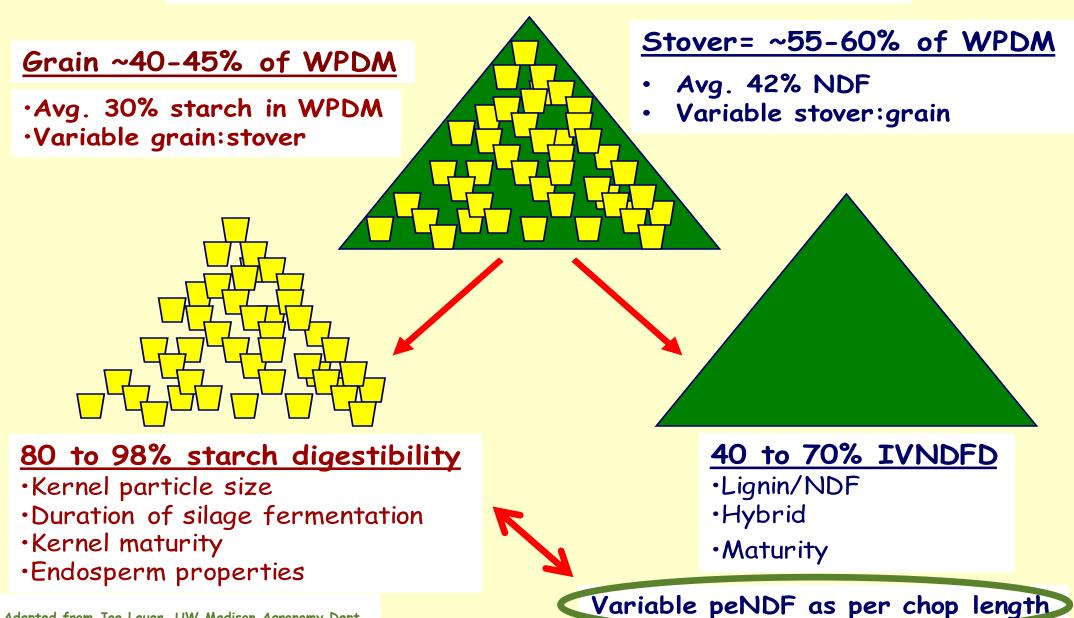
Drought Stressed Soybeans

Nutrient content of soybean silage

Crude protein, %
Neutral Detergent Fiber, %
Acid Detergent Fiber, %
Acid Detergent Lignin, %
Calcium, %
Phosphorus, %

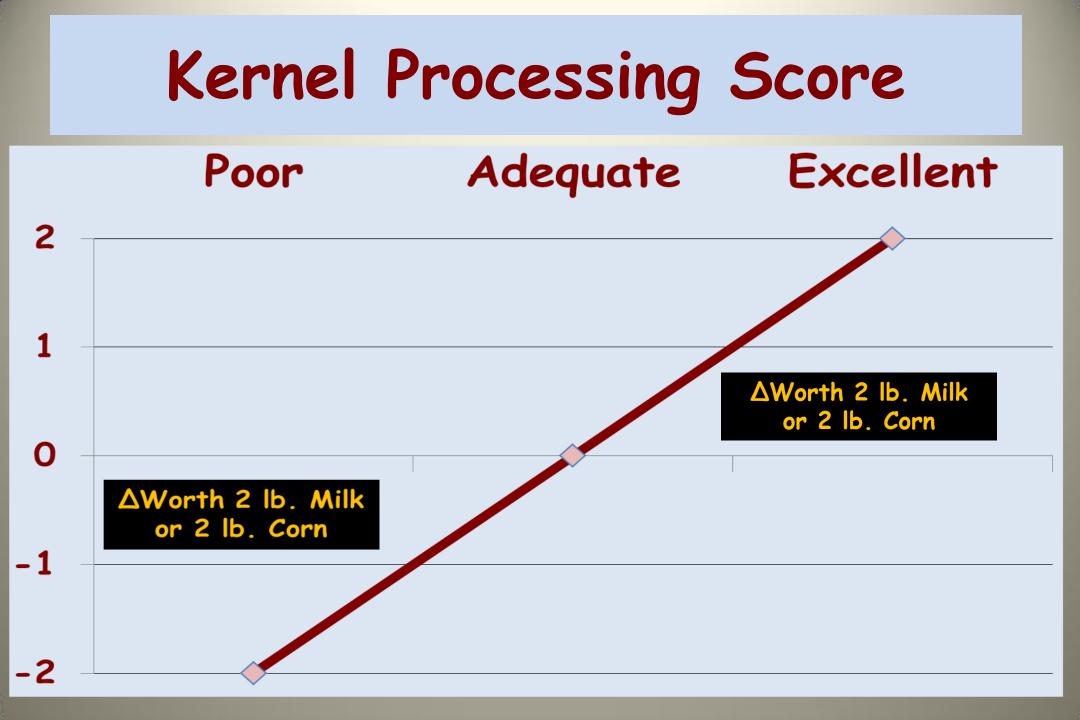
16 to 20.6% 38 to 48% 27 to 37% 6.0 to 7.4% 1.3 to 1.5% 0.26 to 0.31%

- Two varieties averaged over two years and growth stages R2, R4, and R6
- Adapted from Coffey et al. 1995. ARPAS 11:74.


Harvesting & Feeding Drought Stressed Soybeans

- Determine that the crop will not recover
 Carefully !!! Monitor moisture content
 Cut and wilt to 35-50 % DM
- Vary chop length depending on peNDF needs
- >Inoculate if desired
- >Forage test
- Tonnage maybe low but quality maybe good
 Watch ash contents
- >If possible limit to 50 % of forage

Tips & Strategies


Plan to build inventory & develop rations around higher corn silage levels than typical

Whole-Plant Corn Silage

Adapted from Joe Lauer, UW Madison Agronomy Dept.

Conv. Processor TLOC: 13-19 mm Roll Gap: 1-3 mm DM%: 33%-38%

Corn Silage Fermentation Increases Starch Digestibility

Immature Corn Silage

<u>Harvest Stage</u>	% Yield Potential	Moisture	СР	NDF	NDFD	Starch	Forage to Grain Ratio
Vegetative	35-40%	85%	12%	60%	70%	0	100:0
Silking/Tesselling							
Silking/Tasselling	40-45%	85%	11%	<mark>65%</mark>	68%	0	100:0
Blister – Early Milk …note, highly variable,							
rapidly changing quality	60-65%	75-80%	9%	61%	68%	2-10%	90:10
Milk - Early Dough note, highly variable,	75 00%	70 75%	0 5%	559/	1 1 91	10.20%	75.05
	75-80%	70-75%	8.5%	55%	66%	10-20%	75:25
rapidly changing quality							

<u>Harvest Stage</u>	% Yield Potential	Moisture	СР	NDF	NDFD	Starch	Forage to Grain Ratio
Late Dough- Early Dent							
	9 0-95%	73%	8%	49%	65%	24%	65:35
1/4 Milk Line	05 100%	719/	0.9/	A / 9/	(1 9)	20%	55.45
177 MIK Line	95-100%	71%	8%	46%	61%	29%	55:45
1/2 Milk Line							
172 MIIK LINE	100%	64%	7.5%	43%	60%	31%	50:50
Black Layer							
	100%	58%	7.5%	40%	57%	34%	50:50

DM Losses NCR #574

Moisture <u>%</u>	Harvest Loss	Storage Loss	Feeding Loss	<u>Total</u> <u>Loss</u>
>70	4%	14%	4%	22%
60-70	5%	6%	4%	15%
<60	16%	6%	4%	26%

Early Frost St. Pierre and co-workers, 1987

	<u>Milk</u> <u>8/30</u>	<u>Dough</u> <u>9/7</u>	<u>Frost</u> <u>9/18</u>	<u>Frost 2</u> <u>9/26</u>	<u>Frost 5</u> <u>10/17</u>
Moist %	77	74	71	66	55
NDF %	59	59	59	62	66
ADF %	32	29	26	26	28
TDN %	64	66	69	69	67
DMI, lb/d	32	32	34	36	33
Milk, lb/d	43	41	41	43	39

Early Frost St. Pierre and co-workers, 1987

- Optimum harvest a few days after 2nd frost when WP moisture near 65%
- > DMI
- > MY
- < Seepage
- Harvest delayed to 5th frost (55% moisture)
- > NDF, > ADF
- < DMI, < TDN, <MY

Immature Corn Silage

- Allow to field-dry to < 70% moisture
 - High chopping will dry crop out about 3% units
- Alternative: add 300-400 lb Wheat midds or Corn gluten feed per ton silage to lower moisture content from 75% to 65% and raise energy content.
- Store in horizontal silos (bunkers, bags, or drive-over piles) to minimize seepage losses.
- Test moisture content coming out of silo and adjust rations as needed.
- Test NDF, starch, etc. out of the silo to predict energy content & formulate diets

Immature Corn Grain

Maturity vs. Kernel Moisture NCR #57

<u>Stage</u>	<u>Kernel Moisture</u>		
Soft dough	60-65%		
Early dent	50-55%		
¹ Milk line	40%		
Black layer	25-30%		

Table 1. High Moisture Corn Storage in Conventional, Bunker,Bag, and Oxygen Limiting Silos

Conventional Top Unloading Silos, Bunkers, and Silo BagsCorn Kernel Moisture, %MinimumDesiredMaximumFor Corn2632.2640

Ear Corn	26	32-36	40
Shelled Corn	26	28-32	36

Bottom Unloading Oxygen Limiting Silos							
Corn Kernel Moisture, %							
	Minimum Desired Maximum						
Ear corn-rolled*	26	28-32	36				
Shelled corn	24	26-28	32				

*OL Silo with Forage Unloader

Source: Rankin, 2009

Corn Grain Harvest

- If frost-kill occurs before ¹/₂ milkline, then harvest as WP silage
- If frost-kill occurs at ½ milkline, then allow field dry-down to desired moisture content for harvest as high-moisture corn
- If frost-kill occurs at black-layer, then follow usual harvest and handling procedures for high-moisture or dry grain

Harvest & Storage Options

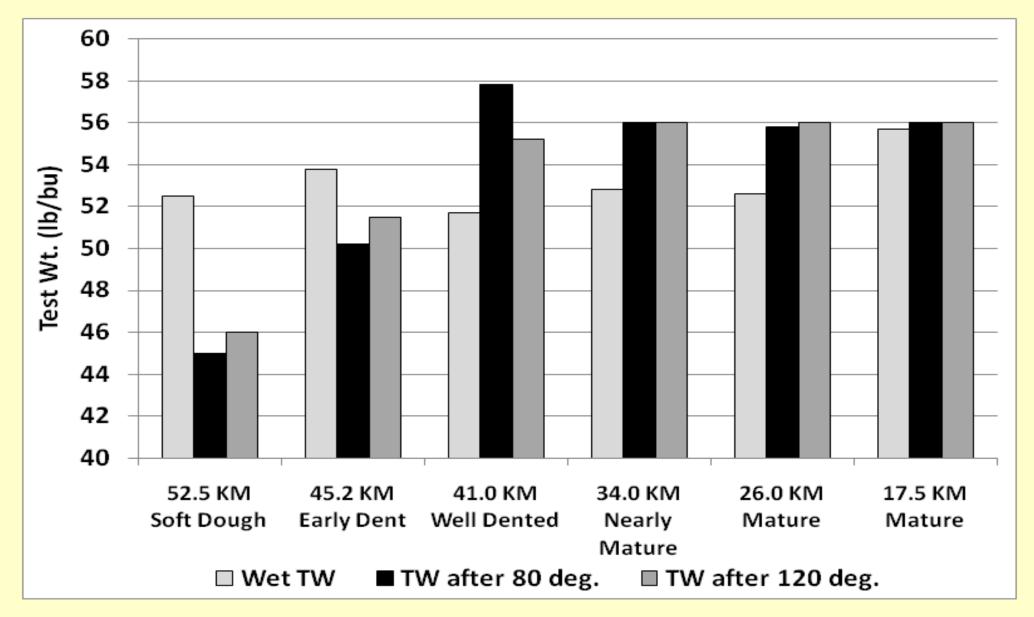
>Snaplage (SNG)

>High-Moisture Shelled Corn (HMSC)

> Dry Shelled Corn (DSC)

Harvest & Storage Comments

- Advantage of DSC is mold/yeast shut down, can exclude fines, & can dilute easily
- >Advantage of SNG was could get it off wetter


> HMSC is the intermediate solution

- Leave the cob in field!
- 35% kernel moisture less risky than 40%, i.e. yeast/ethanol issues
- Relying on low pH (inoculant can help) & oxygen exclusion
- If wet HMSC/yeast of more concern than mold, then LBUC or MOA likley to be more effective than PROP
- Plan storage so that worst corn can be fed before spring/summer
- Coarse roll (2,500 micron MPS) best on wet HMSC

Potential Feeding Issues

>DSC

- Reduced test weight
- Mold/Mycotoxins

Figure 1. Wet and dry test weights for grain harvested at soft dough through mature kernel stages and dried to 15.5% moisture at 80 or 120 degrees (Hicks, 2004)

Source: Rankin, 2009

DSC Feeding Considerations

- > <50 lb./bu. test weight, discount normal DSC energy value by 5%
- > Feed by weight not volume
- Test for nutrient composition including starch content, have labs estimate the energy value using summative energy equations, & adjust ration
- > Test for mycotoxins
 - Dilute, use binders, target groups, discard as necessary

Potential Feeding Issues

>HMSC

- Reduced starch content
- Fast rate & high extent of ruminal starch digestion
- Yeast/ethanol fermentation
- Poor aerobic stability during feed-out
- Mold/Mycotoxins

Potential Feeding Issues

> SNG

- Reduced starch content
- Increased NDF content
- Increased variability in starch, NDF & energy contents
- Fast rate & high extent of ruminal starch digestion
- Yeast/ethanol fermentation
- Poor aerobic stability during feed-out
- Mold/Mycotoxins

HMSC & SNG Diagnostics

≻Testing

- Nutrient composition including starch & NDF contents
- Labs estimate energy value using summative energy equations
- Particle size
- Fermentation profile
- Mycotoxins

HMSC & SNG Feeding Considerations

Adjust ration based on nutrient composition, energy value & particle size

- May require partial substitution with DSC, but feed-out rate must be adequate
- May require using more dietary buffer
- May require using byproduct fiber sources
- Determine & monitor corn DM content to adjust as-fed corn feeding rate, so that desired amount of DM fed
- > If bunk stability poor, may require back-end use of TMR preservative products
- Depending on results of mycotoxin tests, dilute, use binder, target groups, discard as necessary

Tips & Strategies

Work with nutritionist on partially replacing forage with high-fiber byproducts. Changing from a max to min forage-NDF ration formulation approach could reduce forage DM needed to feed the milking-cow herd for the year by 1/3rd

Discuss limit-feeding as an option for older heifers with nutritionist

<u> Min NDF - Forage</u>	<u>Min NDF - Diet</u>	Max NFC - Diet
19%	27%	42%
18%	27%	42%
17%	29%	40%
16%	31%	38%
15%	33%	36%

%Diet forage to meet minimum NDF from forage						
<u>Min. NDF-F</u>	<u>40% NDF</u>	<u>45% NDF</u>	<u>50% NDF</u>			
19%	48%	42%	38%			
17%	43%	38%	34%			
15%	38%	33%	30%			

Ingredient	NDF <u>% of DM</u>	pef <u>% NDF</u>	peNDF <u>% of DM</u>	Replaced per lb. DM	Replaced by 5 lb. DM
Replaced Haylage					
Medium Chop Length	45	85	38.3		
<u>Replacement Feeds</u>					
Chopped Straw	73.0	110	80.3	2.1	10.5
Chopped Hay	55	95	52.3	1.4	7.0
Beet Pulp	45.8	30	13.7	0.4	2.0
Brewers Grains	47.4	40	19.0	0.5	2.5
Corn Gluten Feed	35.5	40	14.2	0.4	2.0
Cottonseed Hulls	85.0	90	76.5	2.0	10.0
Distillers Grains	38.8	40	15.5	0.4	2.0
Malt Sprouts	47.0	40	18.8	0.5	2.5
Soybean Hulls	60.3	30	18.1	0.5	2.5
Wheat Middlings	36.7	4 0	14.7	0.4	2.0

Tips & Strategies

Source feed ingredients to supply protein, energy and fiber with the best value relative to market price on a nutrient content basis

FeedVal 2012 Tool Availability

Cities on the Tool We in lease ensure Feeding Sharayan, Sharayan the Theoding Lainteen Dary Califie Optopert Constance In some Over Face Suppresent Cost In Dary Detromotion Face Califications

Management Tools

Dany Extension Feed Cast Eveluator
 O Core Paulong Statingue
 O second Over Peak Cast
 Dialy Relies Faul Addition Reach Four drugges

Helfers

 Cost-Densiti of Accoluted Local Feeding Program for Dairy Canes Cost-Density Value of Densed Semicri Programs for Dairy Hellers Holer Scharterment Pholer Structure

Projects Publications Processitations Links

A collector of make-of-the-art day, represent tool that are user-liveridy, relations, social, you all, attractive, and set contained. All them

Reproduction

Economic Value of Secent Seminir Programs for Clary Hedres
 Orth DaryNeys A: A Reservicator Economic Analysis Tool
 Orthogong Toma of Programs from the Neuron Over Feed Coel
 Oney Reproductive Economic Analysis

Control of the second process in space (second process)
 Control of the second process in the second process (second process)
 Control of the second process in the second process (second process)
 Control of the second process in the second process (second process)

abiaizo duntina-

Street, Street, Street, Street, St.

G. Aspecter Provint

Dairy Cattle Nutrition UW-Extension: http://www.uwex.edu/ces/dairynutrition/

			Feed Prices (\$/Unit)		Actual Price as %	Best-buy
Ingredient	DM %	Unit	Market	Predicted	of Predicted Value	Ranking
Wet Distillers	45	ton	76.0	183.9	41	1
Corn Gluten Feed	89	ton	162.0	286.7	57	2
Distillers Dried Grains	89	ton	245.0	383.4	64	3
Poor Quality Hay	87	ton	127.5	172.8	74	4
Wheat Middlings	89	ton	190.0	247.0	77	5
Soy Hulls	89	ton	185.0	231.1	80	6
Hominy	89	ton	220.0	257.8	85	7
Wheat	89	bu	6.6	7.7	85	8
Corn Gluten Meal	89	ton	600.0	698.4	86	9
Corn Silage	35	ton	67.8	75.2	90	10
Shelled Corn	89	bu	6.8	7.6	90	11
Sunflower Meal	89	ton	240.0	259.3	93	12
Cottonseed Meal	89	ton	390.0	416.8	94	13
Canola Meal, expeller	89	ton	362.0	387.0	94	14
Molasses	89	ton	220.0	218.3	101	15
Urea	99	ton	472.0	454.7	101	16
Oats	89	ton	263.1	251.3	105	17
Soybeans, raw	87	bu	13.5	12.5	108	18
Soybean Meal 48%	89	ton	533.0	491.0	109	19
Blood Meal	94	ton	1175.0	1072.4	110	20
Good Quality Hay	87	ton	246.2	213.5	115	20
Soybean Meal 44%	89	ton	521.0	449.3	115	21
Barley	89	cwt	14.6	12.6	116	22
Linseed Meal	89	ton	415.0	351.0	118	23
Beet Pulp	89 89	ton	270.0	217.2	124	24
Whole Cottonseed	89 89	ton	370.0	217.2	124	25
Tallow	89 99			293.4	130	
Tallow	99	cwt	36.0	27.7	150	27
Soybean Meal, expeller	92	ton		594.6		
Soybeans, heated	92	ton		559.8		
Earlage/Snaplage	60	ton		162.2		
High-Moisture Corn	70	ton		213.9		
Straw	85	ton		133.0		
Canola Meal, solvent	89	ton		343.8		
Hi-Pro Distillers	89	ton		460.8		
Brewers Dried Grains	89	ton		354.4		
Wet Brewers	25	ton		92.6		
Malt Sprouts	89	ton		281.0		
Wheat Bran	89	ton		230.1		
Corn Stover	80	ton		105.4		
Whey	20	ton		51.2		
¹ Analysis performed usi			FeedVal 2012		nfo/tools/feedval 12/in	dev nhn
					RUP, RDP, NEL, and per	
					nge substantially depend	
				<u> </u>	For more in-depth analy	0
local input prices, nutrie	ints, and	neeu m	greulents used fo	i price formation. I	ror more in-deput allaly	505

FeedVal 2012 predicted dairy feed prices and rankings for July 2013¹

How much to feed?

> Feeding limits

- i.e. DDG at 10 to 20% of diet DM a reasonable target depending upon diet formulation constraints
 - i.e. High Fat & P and Low Lysine impediments to higher inclusion rates

> Least cost ration formulation for specified nutrients

• i.e. CP, RUP, NDF, Starch, Fat, NEL, etc., etc.

	Suggested Limits
Ingredient	<u>lb. DM per cow per day</u>
Beet Pulp	8 - 12
Brewers Grains	5 - 10
Corn Gluten Feed	10 - 15
Cottonseed Hulls	5 - 10
Distillers Grains	5 - 10
Malt Sprouts	5 - 10
Soybean Hulls	8 - 12
Wheat Middlings	8 - 12
Whole Cottonseed	5 - 8

Tips & Strategies

Look ahead -- Consider planting winter wheat or rye for harvest next spring as forage

Harvest of corn stalklage for use in replacement heifer and dry cow rations may be an option

Visit UW Extension Dairy Cattle Nutrition Website

http://www.uwex.edu/ces/dairynutrition/

Extension Cooperative Extension **Extension Dairy Cattle Nutrition UW-Extension** Search Home About Contact Conferences Welcome to Dairv Cattle Nutrition UW-Extension Presentations Dr. Randy Shaver Publications Professor - UW Madison & The Dairy Cattle Nutrition UW-Extension site is designed to provide research-based information for the public Extension Dairy Nutritionist Spreadsheets seeking resources on applied aspects of the nutrition of dairy cattle 280 Animal Sciences Building Links 1675 Observatory Drive Web Site Highlights Madison, WI 53706-1284 Phone: (608) 263-3491 nload a copy of the free Fax: (608) 263-9412 Adobe Acrobat Reader to view rdshaver@wisc.edu and print information provided **Biographical Information** Dairy Team News from the University of Wisconsin • 2009 Four-State Dairy Nutrition & Management Conference Proceedings Pat Hoffman Professor - UW Extension DEPAR UW Feed Grain Evaluation System Marshfield Aq Research Station 8396 Yellowstone Drive, Carteria and the start of Marshfield, WI 54449 digestibility in ruminants (Josh Larson and Pat Hoffman - JDS paper) Phone: (715) 387-2523 Fax: (715) 387-1723 • 🖄 Corn Biochemistry: Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver pchoffma@wisc.edu Conference paper) • 🙆 Corn Biochemistry: Factors related to starch digestibility in ruminants (Pat Hoffman and Randy Shaver **Biographical Information** ENT OF DAIP slide set) A guide to understanding prolamins (Pat Hoffman and Randy Shaver) W Feed Grain Evaluation System (Pat Hoffman and Randy Shaver) Belative Grain Quality - RGQ (Pat Hoffman and Randy Shaver) **EXCELLENCE IN** Spreadsheets **EDUCATION AND DISCOVERY** • MILK2006 Corn Silage: Calculates TDN-1x, NEL-3x, Milk per ton, and Milk per acre **UNIVERSITY OF WISCONSIN - MADISON** EDUCATION AND DISCOVERY Publications www.wisc.edu/dysci Benchmarking forage nutrient composition and digestibility East Contract Programs in High Producing Dairy Herds THE UNIVERSITY Presentations Benchmarking forage nutrient composition and digestibility Diets fed in selected WI high-producing dairy herds

MADISON

© 2009 Board of Regents of the University of Wisconsin System, doing business as the Division of Cooperative Extension of the University of Wisconsin-Extension. If you have any questions regarding this site's contents, trouble accessing any information on this site, require this information in an alternative format or would like to request a reasonable accommodation because of a disability email: rdshaver@wisc.edu