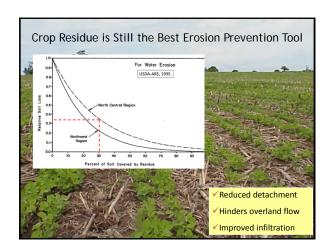


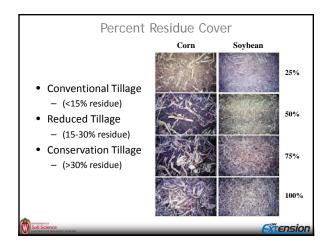
Universal Soil Loss Equation

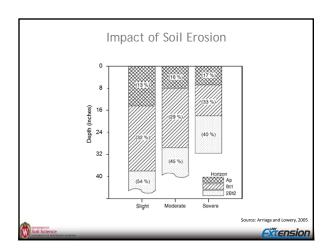
Soil Loss (t/a) = $R \times K \times LS \times C \times P$

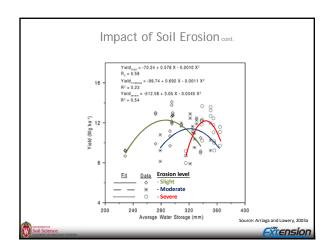
- R = Rainfall intensity and amount
- K = Soil erosivity
 - Texture
 - Structure
- LS = Slope length, grade, shape
- C = Cultural practices
 - Rotation
 - Tillage
- P = Supporting practices
 - Terraces
 - Contours
 - Buffers

NOTE: USLE has been revised several time and now is called RUSLE 2




Soil Erosion Management Practices


- Contour planting
- Contour buffer strips
- Terraces
- Grassed waterways
- Riparian buffers
- No-till and reduced tillage
 - Cover crops



EXTENSION

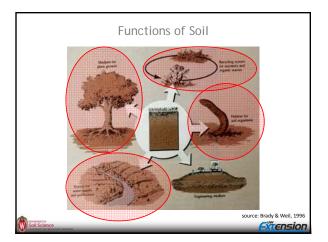
Tillage Trends: 2000 – 2010

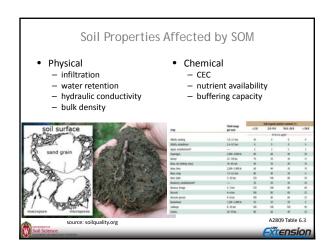
• WDATCP WinTransect Data - Corn

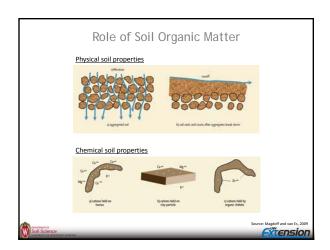
Tillage	2000	2005	2010
		%	
No-till	11	22	29
Chisel	39	33	58
Moldboard	49	43	5
Other	1	2	8

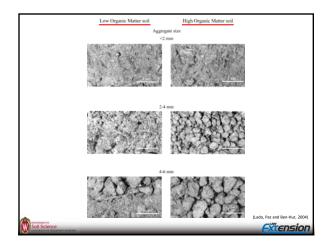
Tillage Trends: 2000 – 2010

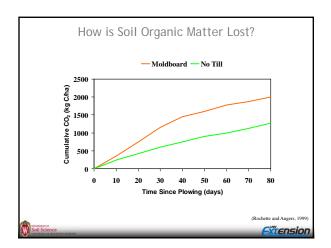
• WDATCP WinTransect Data - **Soybean**

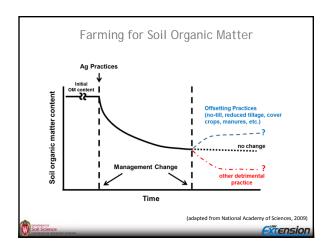

Tillage	2000	2005	2010		
	%				
No-till	29	46	49		
Chisel	39	34	38		
Moldboard	22	19	5		
Other	10	2	8		
Other	10	2	8		

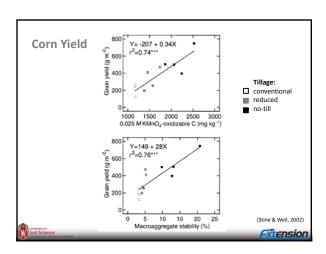

What is Soil Health?

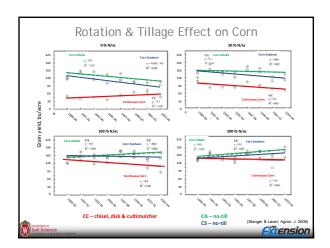

 "the capacity of a specific kind of soil to <u>function</u>, within natural or managed ecosystem boundaries, to sustain plant and animal <u>productivity</u>, maintain or enhance water and air <u>quality</u>, and support human health and habitation."

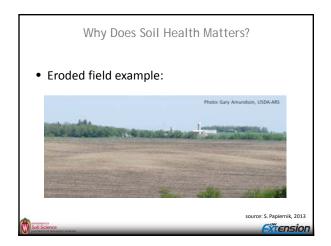





Soil Functions **Indicators** Medium for plant growth Texture Structure Infiltration & bulk density Recycle/store nutrients & Water holding capacity Aggregate stability organic materials Soil organic matter • Habitat for soil organisms рН Extractable N,P, & K Microbial biomass C & N Water storage & purification Potentially mineralizable N Soil respiration **Extension**







Measurement	Process Affected
Organic matter	Nutrient cycling, pesticide and water retention, soil structure
Infiltration	Runoff and leaching potential, plant water use efficiency, erosion potential
Aggregation	Soil structure, erosion resistance, crop emergence, infiltration
pH	Nutrient availability, pesticide absorption and mobility
Microbial biomass	Biological activity, nutrient cycling, capacity to degrade pesticides
Forms of N	Availability to plants, leaching potential, mineralization and immobilization rates
Bulk density	Root penetration, water/air filled pores, biological activity
Topsoil depth	Rooting volume, water and nutrient availability
Available nutrients	Capacity to support plant growth, environmental hazard

Final Thoughts	
Productive soils are about managing SOM	
Old woods kewalinee & horion Corn slake 2 years Corn (2013)	
(*O ₁₃₎	