Pierce Co. No-Till Users Group Roundtable Focus on Nutrients

Carrie Laboski February 27, 2014

Forms of N fertilizer Fertilizer Material N Content Urea Anhydrous Ammonia 82 100 Ammonium Polyphosphate 10 100 Ammonium Thiosulfate 12 100 Aqua Ammonia 20 - 25100 28 - 32Urea Ammonium Nitrate (UAN) 25 Ammonium Sulfate 21 100 33-34 50 Ammonium Nitrate Monoammonium Phosphate (MAP) 11 100 Diammonium Phosphate (DAP) 100 18 46 100 ESN (poly coated urea) 44 100 **EXTENSION**

Roadmap

- Nitrogen
 - Forms of N important facts
 - When should you use inhibitors/stabilizers/ extenders
 - Effect of price level on MRTN rate guidelines
- Liming
- P&K

DEPARTMENT OF SOIL SCIENCE University of Wisconsin-

N Loss Pathways

- Urea
 - Volatilization
 - Surface application without incorporation
 - Need 0.25" of rain in ~2 days to limit volatilization
- Nitrate
 - Leaching
 - Denitrification
- Ammonium
 - None

Comments on N Stabilizers/Extenders

- Just because a sales person says it works doesn't mean it does
 - Ask to see independent University data
 - Ask your Extension Agent/Specialist for help
- <u>Using an inhibitor/extender in all situations is inappropriate</u>
 - Especially if you think that you are guaranteed a increase yield
- Inhibitors/extenders do have a place in some situations

What are N Stabilizers/Extenders?

- Urease inhibitors
- Nitrification inhibitors
- Slow/Controlled release materials

It's critical to know the mode of action of the stabilizer/extender to determine if it will be useful for your situation

Product	Active Ingredient	Mode of Action
Agrotain	NBPT	Urease inhibitor
Agrotain Plus	NBPT Dicyandiamide (DCD)	Urease inhibitor + nitrification inhibitor
SuperU	NBPT Dicyandiamide (DCD)	Urease inhibitor + nitrification inhibitor
NServe	Nitrapyrin	Nitrification inhibitor
Instinct	Nitrapyrin, encapsulated	Nitrification inhibitor
ESN		Poly-coated urea, slow release

Corn yield increase from NBPT with surface applied urea and UAN

• Effective in reducing conversion of surface applied urea and UAN

	Sites	Number of sites	Yield In	crease	
			Urea	UAN	
			bu/a		
	All	78	4.3	1.6	
	N responsive	64	5.0	2.8	
	With sig. NH ₄ ⁺ loss	59	6.6	2.7	
	Yield increase sig. (P<0.	01)			
DE SC	PARTIMENT OF NL SCIENCE	н	endrickson, 1992	<u>Extens</u>	

Effect of Instinct and time of application on corn grain and silage yield at Arlington, WI, 2011 Source Timing Instinct Instinct Grain Yield, bu/a Silage Yield, T DM/a Urea - 100 lb N/a Fall 2010 140 161 7.23 7.84 8.65 Spring 2011 150 163 7.57 Mean 145 b 162 a 7.40 b 8.25 a Dairy Manure 7,083 gal/a Fall 2010 136 142 7.25 7.54 8,500 gal/a Spring 2011 136 157 7.15 8.40 Mean 136 149 7.20 b 7.97 a **EXTENSION**

Effect of nitrification inhibitors on corn yield and N recovery, 4-year average at Hancock, WI bu/a % PP 116 No 37 SD 134 63 PP 121 51 Yes SD 134 65 All treatments received 140 lb N/a PP = preplant SD = sidedress Sidedress applications are preferred to nitrification inhibitors on sandy soils. **EXTENSION**

Price of Corn (\$/bu corn)													
	3.00	3.25	3.50	3.75	4.00	4.25	.orn (\$ 4.50	4.75	5.00	5.25	5.50	5.75	6.00
0.20	0.07	0.06	0.06	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03
0.25	0.07	0.08	0.07	0.03	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03
0.30	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05
0.25	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.07	0.06	0.06	0.06
2 0.40	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.08	0.08	0.08	0.07	0.07	0.07
0.40 0.45 0.50 0.55	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.09	0.08	0.08	0.08
0.50	0.17	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10	0.10	0.09	0.09	0.08
<u>0.55</u>	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.10	0.10	0.10	0.09
0.60	0.20	0.18	0.17	0.16	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10	0.10
0.65	0.22	0.20	0.19	0.17	0.16	0.15	0.14	0.14	0.13	0.12	0.12	0.11	0.11
0.70	0.23	0.22	0.20	0.19	0.18	0.16	0.16	0.15	0.14	0.13	0.13	0.12	0.12
0.75	0.25	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.14	0.13	0.13
	*Price	of N = [\$/ton fe	rtilizer x	(100 / %	N in fer	tilizer)] /	2000					

Conclusions - Chisel Plow

- No clear advantage to using pell lime with regard to increasing soil pH
 - Effectiveness of either lime source is related to application rate
 - Chisel plowing provides adequate mixing of the lime with the soil

Conclusions - No-till

- There may be a slight advantage to using pelletized lime if a pH changed is desired through a 8-inch depth,
 - Though individual depth increments did not show this advantage
- If smaller pH changes are desired then, pelletized lime applied at a 1 to 2.5 T/a rate could be as effective as ag lime with a neutralizing index of 70-79 at 5T/a

Conclusions – Profitability

- In spring 2013, ag lime with a neutralizing index of 80-89 cost approximately \$33/T and pell lime cost approximately \$194/T
- Pell lime needs to be applied at agronomic rates to effectively change soil pH
- Regardless of tillage system, traditional ag lime is a more cost effective liming source

Soybean & corn yield response to K application at Arlington

- Site A, established in 2011
- Site B, established in 2012
- Both sites were no-till and previous crop was alfalfa
- Treatments broadcast applications of 5 rates of K₂O (0 – 160 lb K₂O/a) at each of 4 rates of P₂O₅ (0 – 90 lb P₂O₅/a)
 - Treatments applied to same plots in spring of each year
- Rotation established with soybean in 2011 and 2012

Phosphorus & Potassium

Effect of no-till surface broadcast P_2O_5 and K_2O rates applied in spring 2012 & 2013 on 2013 corn grain yield at Arlington

P ₂ O ₅	K₂O rate, lb/a										
rate	0	40	80	120	160	Mean †					
lb/a	bu/a										
0	38	89	158	198	203	137					
30	28	116	162	206	214	145					
60	46	119	162	194	223	149					
90	43	85	159	213	211	142					
Mean ‡	39 d §	102 c	160 b	203 a	212 a						

- $^{\dagger} P_2 O_5$ rate p = 0.55.
- $\# K_2O$ rate p < 0.01. P_2O_5 rate x K_2O rate p = 0.84. CV = 18%.
- § Mean values followed by the same letter are not significantly different at the 0.10 probability level.
- •These results suggest that: At low soil test levels, K is more limiting than P, OR
- Surface application of P in notill is not effective at increasing yield, regardless of the rat of P applied.

9

